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Roughening transition of a restricted solid-on-solid model
in the directed percolation universality class
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We carried out a finite-size scaling analysis of the restricted solid-on-solid version of a recently introduced
growth model that exhibits a roughening transition accompanied by spontaneous symmetry breaking. The
dynamic critical exponent of the model was calculated and found to be consistent with the universality class of
the directed percolation process in a symmetry-broken phase with a crossover to Kardar-Parisi-Zhang behavior
in a rough phase. The order parameter of the roughening transition together with the string order parameter was
calculated, and we found that the flat, gapped phase is disordered with an antiferromagnetic spin-fluid structure
of kinks, although strongly dominated by the completely flat configuration without kinks. A possible interest-
ing extension of the model is mentiond&1063-651X99)00908-3

PACS numbe(s): 64.60.Ht, 64.60.Ak, 05.70.Fh, 02.50.Ey

[. INTRODUCTION cess, thus sharing its exponents, a fact that was confirmed by
Monte Carlo simulation$7]. In the restricted solid-on-solid
It has been realized that nonequilibrium interacting par—(RSOS version no such refationship exists. It is possible,

. S . . however, to arrive through a site-link transformation at an
ticle systems are capable of exhibiting very interesting and

unusual phenomena ifl+1) dimensions, such as single- equivalent driven diffusive system in which two types of

defect and boundary induced phase transitidrs3]. More- oppqsnely charged particles o_Ilffuse a_symr_netncally and are
continuously created and annihilated in pairs.

over, it is known that some of these phase transitions are . . Lo
accompanied by spontaneous symmetry breakiS§B In this work we have proceeded to a further investigation
Pf the RSOS version of the models first proposefi7in Our

[3,4], in which some macroscopic observable of the modeStud is based on the mapping of the master equation dov-
behaves in the steady state asymmetrically with respect to y ppIng q 9

; : . erning the dynamics of the associated reaction-diffusion pro-

what it would be expected from the microscopic rules gov- . . . . - .
erning its dynamics. All this is rather unusual for equilibrium cess mt(.) an |m§g|qary-t|me Scl@nger equatlon,. 'the
one-dimensional systems of particles interacting throug amiltonian (_)f Wh'Ch_ is that of a spiB=1 non-Hermltl_an
short-range forces only, and there have been serious attem gantum_chanﬁS]. This _allows us to emplqy standard fmlte-
towards the understanding of these phenomena, in particul&?€ SCalingFSS techniques to the resulting stochastic pro-
that of SSB[5]. It appears that among the many ingredientsC€SS, in the same way as one is used to do with Hamiltonian
favoring SSB to take place, unbounded noise is a key ondheories or with the transfer matrices of classical spins sys-
whether it comes from the introduction of defects, boundaryems[9]. In this way we were able to analyze the time evo-
terms, or any microscopic rules rendering a system lackindition operator for chains of sizes up to 16 sites, calculating
in detailed balance. their spectra and stationary states. The paper is organized as

Growth models provide a suitable theoretical frameworkfollows. In Sec. Il we present the basic formalism in which
for the investigation of a gamut of model systef§ and it we work, comment on its physical contents, and derive the
turns out that they can be used to investigate the aboveaime evolution operator for the particular process we are in-
mentioned phenomena as well. In a recent watk a class terested in. In Sec. Ill we show and discuss the finite-size
of growth models addressing both the questions of a roughdata we obtained for the dynamic critical exponent, the order
ening transition in one dimension and of SSB was intro-parameter of the roughening transition and the string order

duced. Concerning SSB, these authors have inquired aboghrameter. Finally, in Sec. IV we conclude and indicate
the necessary ingredients in a model in order for it to showsome directions for further investigation.

SSB, and they found it possible to have SSB characterized
by a nonconserved order parameter in a ring geometry, as
opposed to the situation in a related model showing the same

characteristics but now with the SSB associated with a con- Il. TIME EVOLUTION OPERATOR
served(i.e., slow order parameter and in the presence of
conspicuous boundary terni8,4]. In the unrestricted ver- We are going to focus on the stochastic particle system

sion, the models can be related to a directed percolation prassociated with the growth model, more specifically on its
stochastic transition or intensity matrix. There is quite a

number of different ways of writing down the master equa-

*Electronic address: jricardo@power.ufscar.br tion in operator form, some more suited to the study of sym-
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metries[8], some others envisaging a perturbative approach JP(n,t) - -

[10]. Here we give a brief derivation that parallels thaf®f pn = > [T(nmP(M,H-T(MmP(n], (1)
Let us attach to each sité of a one-dimensional lattice nel

ACZ of volume|A|=L a stochast|c vanabla/ taking val-

P(n,t) the probability of the reallzat|on of a particular con- only blnary collisions intervene, we write(n,n)= F for

figuration n=(n,,n,, ... ,n)eQ=w0" at instantt, we the elementary process,©)—(c,d), and the master equa-
write the master equation as tion reads
N—-1
dP(n,t) C o+
= /tanmtbp n,+a Nmtb n s m n,t 2
ot en [ n, Ny (11---1/ y v allm 1---1L1 CdEO n+cn+d(')’ ()

where the primes indicate that the free channalb] of energy and in general observd$+H notwithstanding. It
=(0,0)=(c,d) should not be considered in the summationsis, however, useful and intuitive to think ¢f as a Hamil-
and the additions in the indices of the rates and in the arguonian whose quantum fluctuations govern the time fluctua-
ments ofP(n,t) are all taken moduld\. Periodic boundary tions of the classical system of particles.
conditions onA will be understood in what follows. The process we are interested in is a growth model de-
We now introduce vector spaces in the description of Egfined as followq7]. Leth, e N be the height of a surface at
(2). To do this we turnw={0,1, ... N—1} into o=CN and  site /€ A. The surface evolves by attempting, sequentially
ninto [ny=|ny,n,, ...,n)eQ=w®". Taking the ortho- and at randomly chosen sites, adsorption of an adadtom
normal basig|n)} for Q we write —h_+1 with probabilityqdt, and desorption of an adatom
h,—minth,_,,h,} or h,—min{h,,h, .} each with prob-
ability 3(1—q)dt. We now impose the RSOS condition
_ lh,,1—h,<1VY/ e A, which suggests the use of link vari-
IP(t)= EQ P(n.t)n) ®) ablesc,=h,,1—h,e{-1,0,1. In order not to overload the
notation with unnecessary pluses and minuses, let us take the
values of c, modulo 3, mappingc,=—1,0,1 into c,
=2,0,1, respectively. In this representation the growth pro-
cess can be described by the set of transition rates

for the generating vector of the probabilitieB(n,t)
=(n|P(t)). We are in this way providing the space of gen-
erating functions with a Hilbert space structure. Next we
endow the space of linear transformationswofvith the ca-
nonical basis of matricesE®® with elements E2);

= 8,i0pj,» 0=a,b,i,j<N-1, and introduce the operatof ry= 2(l a, TI'%=q,
such thaiXj; = 6,1, XN=1. Alittle reflection and compari-
son show that within this settings we can write E2).in the

form
F§8=q, on 2(1 aq),
d[P(1)
TZ—H“D('[)), 4
Ie=1-q, T&=a,
with
and 1“12 g. (6)
N—1 N—1
HI(/%: A abE—O’ CdE_O’ (1=X3" Xy I agERER. According to Eq.(5) we write for this process the time evo-
CIvER SRR R lution operator as
5
H is but the infinitesimal generator of the Markov semigroup L
U(t)= exp(—tH) of the continuous-time Markov chain de- H= >, H, /i1, (7)

fined by the set of rateE25. From Eq.(5) we see thaH is

a N-XNY, usually nonsymmetric, very sparse matrix. One
says that Eq(4) is an imaginary-time Schdinger equation, with the two-body stochastic transition matrix given explic-
the fact thatH does not have the physical significanceitly by
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q
1
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where we have ordered the two-site basis vectors antilexico- L

L
graphically, i.e.,[0,00<]|1,00<---<|1,2<|2,2), and the H= >
dots indicate null entries. Q==
Before proceeding to the next section, it is worth mention-

ing some properties dfl. As a stochastic transition matrix, )
conservation of probability flux requirésH;;=0, which in whereQ andk label the U(1) and momentum eigensectors,
turn constrains the diagonal elements to be giverH respectlvely.. Each (1) sector represents a closed class of
—3,,;H;;; compare with Eq(1). The first of these condi- the stochastic process, the corresponding block matfix

tions implies the existence of a trivial left eigenstate withP€ing itself a stochastic transition matrix governing the dy-
zero eigenvalue, namics within the given sector. We say that our process is

decomposable, nonergodic, and that th@)Uabel classifies
its 2L + 1 irreducible, closed classes. The momentum label
however, is introduced here solely in order to take advan-
Q)= In), (Q|H=0, (9 tage, numerically, of the further reduction of ordelr bh the
ned sizes of the block$H? it furnishes, the physically relevant
momentum sector being the one witl=0, since the zero
with (Q|Q)=N" the cardinality of the state space. This spe-eigenvalue together with the completely flat surface of the
cial vector plays a role in the determination of expectationmodel is in this sector. One can look for a relatiEik)
values, for one can write the average of an observAlig «k? for the real part of the eigenspectrum, but we do not
with respect to the probabilitigd(n,t) with the aid of|Q) as  expect to extract useful information, e.g., abeufrom this
relation for small lattice sizes. Moreover, the interpretation
of such a relation for the low-lying excitations of the process
as a dispersion relation for quasiparticles of a free field
theory would be somewhat cavalier; 4d4,12.

-1
HR, (12)
L k=0

X

<A>(t>=n20A(n)P(n,t>=<9|A|P<t)>. (10)

We expect physical observables of the classical system of

particles to be diagonal in the natural bafis)}, once they

all have to commuteH is ObViOUS'y not diagonal in this According to Eqs(e), asq increases creation of — as

basis; it is not an observable of the system. Equati®  \vell as annihilation of- + pairs increases while the remain-

summarizes an important difference between quantum physng processes induce segregation of particles. This corre-

ics and the kind of classical physics we have here: it is tha§ponds to an increase in adsorption and in the growth rate of

expectation values are linear jR(t)), not bilinear, the ele- sjands, leading to rougher configurations. égowers, in-

ments off P(t)) being probabilities themselves, not probabil- creased annihilation of — pairs together with more sym-

ity amplitudes. metric diffusion of O’s flattens the surface; see Sec. Ill C.
Besides these general properties, Bun Eq. (7) is addi-  Around the critical pointj=q. separating these two phases

tionally translation invariant, due to the homogeneous rateghe correlation lengths of the infinite system behave like
in a ring geometry, and possesses a U(1) symmetry labeled

by the total chargegd=Q(+)—Q(—), which is conserved
along the process. These symmetries allow us to block- ) B s
diagonalizeH and to write it as the direct sum & o &) o |q—qg| Mo [g—qe| "l (12

lIl. FINITE-SIZE SCALING
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Here ¢ is the correlation length in the time direction while
&, is the one in the spatial direction, with and v, the
corresponding critical exponents afe- v /v, the dynamic
critical exponent.

For finite systems of sizé, according to the usual FSS
assumption$9,13,14, we expect the scaling

gL (13)

to hold wheng=gq,, , the finite version of the critical point
gc, with 4, the finite version off. On general grounds one
expects lim__qc . =0 and lim _ 6, = 6. Therefore from

Egs.(12) and(13) we obtain the relations

INL&),L(Ae, )/ &),L—1(dc,)] _ INL&),L+1(dc,0)/€)L(dc,)]
In(L/L—1) - In(L+1/L)

o, (14
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TABLE I. Finite-size data for the region where a minimum is
observed. The numbers between parentheses represent the estimated
errors in the last digit of the data.

L-1L,L+1 ai. o)
5,6,7 0.190 46() 1.7944111)
6,7,8 0.190 67@) 1.749 0081)
7,8,9 0.189988) 1.718 35Q1)
8,9,10 0.189294) 1.695 3201)
9,10,11 0.188 753) 1.677 1701)
10,11,12 0.188 354) 1.6625891)
11,12,13 0.188 078) 1.650 7661)
12,13,14 0.187 881) 1.6411121)
13,14,15 0.187 761) 1.6331902)
14,15,16 0.187 683) 1.626 65%2)
Extrapolated 0.187%) 1.5851)
[wesT] [7.329 [2.543

which through a comparison of three successive system siz€sarlo simulations, seems to b#yp=1.580 75(3)[18]; it

furnishes simultaneouslyy., and 6, . Of course §H’_L1
=Re[AE, }, with AE, =E{) the first gap ofH, since for
stochastic transition matricés”’=0 by construction.

A. Dynamic critical exponent

We have calculated the gapsE, in the Q=0, k=0
sector through the use of the Arnoldi algorittii®,16. This
is a Krylov subspace projection technique that effects th

senberg form, the eigenpairs of which converge variationally

to that of the original matrix with the algebraically larger

should be mentioned that in an evaluation @&, more
closely related to ours a value @fp=1.588(1) has been
found [19], and that it is not clear why such discrepancies
arise in the value ofipp calculated by different methods.
The interpretation of the data in Table Il is touchier. We
can see that the values qf | converge at a reasonable rate
to the extrapolated limig;=0.1932, which is different from
the previously foundy.=0.1875. We believe, however, that

) X . § we have had access to larger lattice sizes, we would have
reduction of a general nonsymmetric matrix to upper Hes-

”

t—4q., since the values df vary less. We thus
trust the value ofj;=0.1875(1) as our best estimate for the

observed

part of the spectrum converging first. In order to SaVecritical pqint. The situation with _the critical exponeﬁ’@_ is
memory we have used a restarted version of the algorithm, iifférent: it seems to be converging to a completely different
which we fix the dimension of the Krylov subspace and use’@lue thandpp. In fact, this behavior was to be expected, for
some of the approximate eigenvectors obtained in one iterdt has been foundl7] that in the rough phase>q. the ex-

tion as the starting vectors for the next iteration, until con-

ponents of the process are those of the Kardar-Parisi-Zhang

vergence is obtained to the desired accuracy. In this way weniversality clas$20], in partiCUIareKPZ”:%- As can be seen
were able to handle matrices of orders up to 324 862 with ufrom Table I, the first few values of;’ show a monotonic
to ~8x10° nonzero entries, keeping the Krylov subspaceincreasing behavior up ty=1.4649, but then the sequence

always with fewer than 64 vectors.
The results we have obtained are summarized in Table

| TABLE Il. Finite-size data for the region where crossing occurs.

and Il. The extrapolated values in the last line of these tabledhe data without an associated error are believed to be correct to
were obtained through the Bulirsch-Stoer extrapolatiorfh® figures shown.

schemd 17], with wgst the free parameter of the algorithm

chosen over a certain range so as to optimize the converge bf LLL+1 de. o
the finite-size data. 5,6,7 0.295 749 1.445967
In applying Egs(14) we found two consistent, converg- ¢ ; g 0.275 660 1.458 235
ing sets of data, the first one, shown in Table | and markeg g 4 0.261 781 1.463535
with a prime, realizing the first equality in Eqél4) only 910 0.251 648 1.464 937
approximately, and the second one, that in Table Il an<€'16 11 0244 053 1.463 830
marked with two primes, realizing it exactly. This behavior 1'0 1'1 12 0I238 186 1l461 059
s illustrated in Fig. 1. - 11,12,13 0.233511 1.457 203
The first set of data exhibited a rather smooth conver- 5" 2 0.229 689 1452672
gence in both the values g | and 6, , while the second set e ' '
behaved more irregularly. The values in Table | indicate a141s 0.226 497 1.447753
second-order transition taking place arowje=0.1875 with 14,1516 0.223 784 1.442647
a dynamic exponent of’=1.585. This value of)’ is com-  Extrapolated 0.1932) see text
patible with the exponent of the directed percolation procesg,, ] [1.815 see text

for which the most accurate value to date, obtained by Monte
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FIG. 1. Variation of the exponert with g. The values ofg(*) q

(2) i i ions i
and '~ were obtained from the first and second expressions in Egs. FIG. 2. Order parameteil, for evenL betweenL =8 andL

(14), respectively, using the triplet of lengthk—1L,L+1 _ .
=13,14,15. The inset shows that the difference between their val- 16 together with the extrapolated curve.

ues reaches a minimum aroun@=0.188 and vanishes arour
=0.226. The finite-size sequences obtained from both the minima
and the crossings converge to well-defined limit values; see Tablewhich is fast in the sense of not being conserved by the
I'and Il and the text. dynamics. The choice of such an order parameter anticipates
the interpretation of the roughening transiticactually, of
the flattening transitionas the result of a spontaneous break

begins to decrease to reach the bottom value g  of theZ. symmetry; while in the rough phase all heights are
=1.4426. A partial extrapolation of the first four points, 6 exploited evenly, in the flat phase the system spontaneously
<L <9, gives#”"=1.47, while a partial extrapolation of the selects one fiducial level around which the heights fluctuate.
rest of the points, 18L <15, gives#”=1.42. This absence One then expectd! to be finite in the flat phase while
of monotonicity of the finite-size data f@’ is quite unusual, Vvanishing in the rough phase due to canceling fluctuations.
and we have not yet a clear clue to this behavior. Even so, We have calculatedl for evenL betweenL=8 andL
we can take the set of values @f in Table Il as indicating = 16; our finite-size data together with the extrapolated val-
the presence of a critical region fqe>q. with an exponent ues appear in Fig. 2. From that figure we clearly see the
0" # 6pp, possibly withé”= Oyp. transition taking place arourgl=0.190, although the precise
Concerning the exponent, , we found it not possible to determination of the critical point is not possible from this
apply the standard approa¢h3,14] to obtain its value be- figure. We have not found the signature of two differggs
cause the derivatives of R®E, } with respect tay evaluated in our data forM = lim _ M, which we regard as an indi-
at the pointsy, . change sign for some pairs of lattice sizes, cation thatq” should indeed tend tq. asL—o.

thus preventing us from taking logarithms. The finite-sizeé The order parameteM vanishes aroundj=<g. as M
sequences obtained with the absolute values of these derivg(qc_q)n_ The plot of InM versus In¢.—q) for the points

tives as well as with those obtained with the derivatives ofo_lzgqgo_lg of the extrapolated curve in Fig. 2 together

the absolute values of the gaps also failed to converge, sQiih a linear regressiofLR) fit appears in Fig. 3. We found
that we were not able to obtain an estimatevoffrom our 5, exponenty=0.57+0.03, which compares well with pre-

diagonalizations. vious results in the literature: in the first of the papers by
. Alon et al.[7], » has been evaluated as 056.05, while in
B. Spontaneous symmetry breaking a recent simulation of a model of yeastlike growth of fungi

Given that the surface suffers a transition from a flatcolonies with parallel dynamics it has been found that
phase to a rough phase, it is natural to think of an order=0-50[21]. Also in a certain line in the phase diagram of a
parameter which measures this transition. Moreover, it is inone-dimensional next-nearest-neighbor asymmetric exclu-
teresting to have an order parameter taking into account th@0n process closely related to these growth models it has
symmetries of the process, which are besides the transi&een found thaty=0.54+0.04[22]. In the second of the
tional and U1) symmetries, &, symmetry related to the Papers by Aloret al.[7], however, the more accurate value
fact that the microscopic dynamics is invariant under an ar#=0.66=0.06 has been published, pushing the estimate to a

bitrary integer shifth,—h +n in the heights. A proper or- Somewhat higher value. Recent preliminary Monte Carlo
der parameter is given Hy] simulations of ours, on the other hand, suggest a typical

Ginzburg-Landau scenario for the symmetry break in these
1 models, which would then predict ap=3. We believe that
M, =— —1h 15 more extensive simulations can settle this point, and work is
L /21 =1 @9 being done in this direction.
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FIG. 4. String order paramet@?Z(L/2+1) for evenL between

FIG. 3. Plot of InM vs In(g.—0). The LR slope gives the critical L=8 andL=16.

exponentn=0.57+0.03.
/
C. String order parameter Oi(/)= < S; ex;{ i 772 S
n=1
In order to better understand the nature of the roughening

transition, let us look at some typical microscopic configura-where the brackets indicate the expectation value in the
tions of the model. The roughest possible surface is given iground state. In the gapped, Haldane phase of the AFH chain
the link representation byt +- - -+ ——. .. —), the state of as well as in the disordered flat phase of the mode[24)
maximal height in the€Q =0 sector of the dynamics. In spin one has lim__07(/)#0.

language, this state corresponds to two domains separated by From what we said above it is clear that the string order is
two antiferromagneti€AF) kinks. The second roughest pos- .

sible surface configurations are given by those with a pair ol‘ufSt the kmd|0f ordﬁr we ﬁxpectltolobser\r/]e in the flat phase
0's, e.g.f+---+00—---—)or|[0+---+—---—0). From of our model. We have thus calculated the steady state ex-

H H ; Z

this example and the rates in EQ6) it becomes clear that piectauo dn //,V_all_u; °f1 thﬁ string orde;_parame_(tiaﬁ) with S,

the flattening process is induced by AF kink annihilation, — ®n &N d/ r? +| , the max'.ml::m Lst%nce Ina rlnlg geom&.d

while diffusion of O’s introduces surface shape fluctuations SY» @nd the results appear in Fig. 4. Our extrapolations di
ot perform well for this set of data, and are not shown in

It is important to notice that the absence of desorption fron]!°! P . . i

the middle of smooth terraces enforces a certain AF ordey "> flg.u.re. Th? general trenzd, however, Is quite clear: above
among the particles, for pairs are created onlyras pairs, e critical point, g>dc, O%(/) sztrongly tends to zero,
never as— + pairs, and since there are Ao— = — + reac-  While for g=qc we have lim__O7(~)#0. The pointq
tions (which would violate the RSOS conditiprwe see that =0 is special, for afg=0 the completely flat surface be-
this order persists as long as pairs survive annihilation. In theomes an absorbing state a@f.(/)=0 exactly at this
rough, highe phase thet- particle will preferably move left-  point. As q grows from zero, the AF spin fluid begins to
wards, while th_e— parti(_:le will p_refer to move to the right, form andOZ (/) grows accordingly, until aj= g, the asym-
eventually leaving a pair of 0's in between which then gen-metry in the diffusion rates for the particles disrupts this AF
erates anothet — pair, thus leading to rough configurations spin fluid structure, ordered domains begin to prevail, and
like, e.g.,[---++0---—0—---). In the flat, lowg phase the string order vanishes. We then see that the string order
the diffusion of particles becomes more symmetric and thgyarameter clearly reveals the mechanism of the roughening
segregation of particles less efficient, and we thus expect t@ansition as the unbounding of the fluid antiferromagnetic

observe a more uniform distribution @f — pairs along the  pairs in favor of the formation of ordered domains.
lattice than in the higly phase. The completely flat surface

without any AF kink is only attained aj=0.

In the context of two-dimensional RSOS crystal growth
models and the Haldane conjectyi23], it has been pre- In summary, we carried out a finite-size scaling study of
dicted [24] and subsequently extensively verifig@5—-30  the roughening transition in a class of one-dimensional
that a particular type of long-range order exists in the spirRSOS models which also presents spontaneous symmetry
S=1 antiferromagnetic isotropic Heisenbef§FH) chain.  breaking. We found that at the critical poigt=0.1875(1)

In the ground state of the AFH chain, this order may bethe transition occurs with a dynamic exponent compatible
viewed as made up dhot necessarily closelybound + — with that of the directed site percolation process, for which
dipoles interspersed among the 0’'s, forming what has bewe have the estimaté=1.5851), andthat abovey. there is

come known as an AF spin fluid. The order parameter thaa critical rough phase most probably with KPZ exponents.
identifies this type of order is the so-called string order pa-Unfortunately, we were unable to calculate a second expo-
rameter[24] nent from our diagonalizations. This might be due to the

SZ,/> , (16)

IV. SUMMARY AND CONCLUSIONS
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non-Hermiticity of the opgr_ato!rl, which might have causedl p=(1-u)q and p=(1+u)q

an unusual nonmonotonicity in the values of the gaps with

the parameteq, thus preventing us from obtaining . This ; a+b_ ab a—b_ pab/Ty.

Iackpof mongg)nicity FP)was alrea%y been reportedn% the “tera_accorglr?g tol'c-q=T"cq(p) and FbC;d_FCd(p) ' the rgles of

ture[4,31], where noticed the slow convergence of the finite-P @ndP interchanged whenevéfqc#0 for a givenl’c47 0.

size data towards the infinite volume limit has also beerFor example, I'§*0=3(1—p) and I't;{=3(1-Pp), but

noticed. r?*3=p andl'Y,j=p. The choice of which combination of
The order parameteévl was found to vanish liké<(q:.  \gues ofms in the new rates will pick & or ap with

—@)” for g=g. with an exponenty=0.57x0.03, in agree-  ogpect to the original rates is immaterial, for letting>

ment with previously found values of [7,21,23. The cal-  _ ;" exchange their roles. For this process one may look at
culation of the string order parameter revealed that the flatg orger parameter

gapped phase of the model is a disordered phase analogous
to a Haldane phase, with the stationary state presenting an
antiferromagnetic spin-fluid structure of kinks, although
dominated by the completely flat surface with no such a
structure. The roughening transition may thus be understood
in the link representation as the unbounding of the fluid anto see whether one finds a spontaneously symmetry-broken
tiferromagnetic pairs in favor of the formation of ordered phase_ It may happen that for some values of the fiebthe
domains, which then begin to blend together, providing theyets spinodal points, and that these points are associated with
surface with a finite growth velocity. unusual dynamic exponents, e.g=1, once they have al-

Itis possible to push further the investigation of this classready appeared in one-dimensional driven diffusive systems
of models in one definite way. The idea is to allow for an [4] This prob|em is Currenﬂy under investigation_
explicit break of the symmetry in the set of rates, Hj, by
the following artifact [32]. In the particle scenario, we
double the number of sites, introducing between two succes-
sive linksc,,c, . 4 a noninteracting flag variabla, . 4/, tak- The author would like to acknowledge Professor Vladimir
ing two possible values, call them and —. This variable Rittenberg for having called his attention to this subject, and
will mimic the pseudospin€1)"/. We then allow the rates Professor Francisco C. Alcaraz for helpful advice and many
of our modified model to be parametrized by, besidess  suggestions that greatly improved the final form of the manu-
chiral symmetry breaking field [ — 1,1] such that now the script. This work was supported by Fundaae Amparo a
rates depend on the quantities Pesquisa do Estado deSRaulo(FAPESP, Brazil.

| =

L
M (u)= /21 m, 1/
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