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Roughening transition of a restricted solid-on-solid model
in the directed percolation universality class

J. Ricardo G. de Mendonc¸a*
Departamento de Fı´sica, Universidade Federal de Sa˜o Carlos, 13565-905 Sa˜o Carlos, SP, Brazil

~Received 24 March 1999!

We carried out a finite-size scaling analysis of the restricted solid-on-solid version of a recently introduced
growth model that exhibits a roughening transition accompanied by spontaneous symmetry breaking. The
dynamic critical exponent of the model was calculated and found to be consistent with the universality class of
the directed percolation process in a symmetry-broken phase with a crossover to Kardar-Parisi-Zhang behavior
in a rough phase. The order parameter of the roughening transition together with the string order parameter was
calculated, and we found that the flat, gapped phase is disordered with an antiferromagnetic spin-fluid structure
of kinks, although strongly dominated by the completely flat configuration without kinks. A possible interest-
ing extension of the model is mentioned.@S1063-651X~99!00908-3#

PACS number~s!: 64.60.Ht, 64.60.Ak, 05.70.Fh, 02.50.Ey
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I. INTRODUCTION

It has been realized that nonequilibrium interacting p
ticle systems are capable of exhibiting very interesting a
unusual phenomena in~111! dimensions, such as single
defect and boundary induced phase transitions@1–3#. More-
over, it is known that some of these phase transitions
accompanied by spontaneous symmetry breaking~SSB!
@3,4#, in which some macroscopic observable of the mo
behaves in the steady state asymmetrically with respec
what it would be expected from the microscopic rules go
erning its dynamics. All this is rather unusual for equilibriu
one-dimensional systems of particles interacting throu
short-range forces only, and there have been serious atte
towards the understanding of these phenomena, in partic
that of SSB@5#. It appears that among the many ingredie
favoring SSB to take place, unbounded noise is a key o
whether it comes from the introduction of defects, bound
terms, or any microscopic rules rendering a system lack
in detailed balance.

Growth models provide a suitable theoretical framewo
for the investigation of a gamut of model systems@6#, and it
turns out that they can be used to investigate the abo
mentioned phenomena as well. In a recent work@7#, a class
of growth models addressing both the questions of a rou
ening transition in one dimension and of SSB was int
duced. Concerning SSB, these authors have inquired a
the necessary ingredients in a model in order for it to sh
SSB, and they found it possible to have SSB character
by a nonconserved order parameter in a ring geometry
opposed to the situation in a related model showing the s
characteristics but now with the SSB associated with a c
served~i.e., slow! order parameter and in the presence
conspicuous boundary terms@3,4#. In the unrestricted ver-
sion, the models can be related to a directed percolation
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cess, thus sharing its exponents, a fact that was confirme
Monte Carlo simulations@7#. In the restricted solid-on-solid
~RSOS! version no such relationship exists. It is possib
however, to arrive through a site-link transformation at
equivalent driven diffusive system in which two types
oppositely charged particles diffuse asymmetrically and
continuously created and annihilated in pairs.

In this work we have proceeded to a further investigat
of the RSOS version of the models first proposed in@7#. Our
study is based on the mapping of the master equation g
erning the dynamics of the associated reaction-diffusion p
cess into an imaginary-time Schro¨dinger equation, the
Hamiltonian of which is that of a spinS51 non-Hermitian
quantum chain@8#. This allows us to employ standard finite
size scaling~FSS! techniques to the resulting stochastic pr
cess, in the same way as one is used to do with Hamilton
theories or with the transfer matrices of classical spins s
tems@9#. In this way we were able to analyze the time ev
lution operator for chains of sizes up to 16 sites, calculat
their spectra and stationary states. The paper is organize
follows. In Sec. II we present the basic formalism in whi
we work, comment on its physical contents, and derive
time evolution operator for the particular process we are
terested in. In Sec. III we show and discuss the finite-s
data we obtained for the dynamic critical exponent, the or
parameter of the roughening transition and the string or
parameter. Finally, in Sec. IV we conclude and indica
some directions for further investigation.

II. TIME EVOLUTION OPERATOR

We are going to focus on the stochastic particle syst
associated with the growth model, more specifically on
stochastic transition or intensity matrix. There is quite
number of different ways of writing down the master equ
tion in operator form, some more suited to the study of sy
1329 © 1999 The American Physical Society
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1330 PRE 60J. RICARDO G. de MENDONC¸ A
metries@8#, some others envisaging a perturbative appro
@10#. Here we give a brief derivation that parallels that of@8#.

Let us attach to each sitel of a one-dimensional lattice
L,Z of volume uLu5L a stochastic variablenl taking val-
ues in the set of statesv5$0,1, . . . ,N21%. Denoting by
P(n,t) the probability of the realization of a particular co
figuration n5(n1 ,n2 , . . . ,nL)PV5vL at instant t, we
write the master equation as
n
rg

Eq

n-
we

up
-

ne

ce
h ]P~n,t !

]t
5 (

ñPV

@G~n,ñ!P~ ñ,t !2G~ ñ,n!P~n,t !#, ~1!

whereG(ñ,n).0 is the rate for the transitionn˜ñ. When
only binary collisions intervene, we writeG(ñ,n)5Gcd

ab for
the elementary process (a,b)˜(c,d), and the master equa
tion reads
]P~n,t !

]t
5 (

(l ,m)PL
F ( 8

a,b50

N21

Gnl ,nm

nl 1a,nm1bP~n1 , . . . ,nl 1a, . . . ,nm1b, . . . ,nL ,t !2 ( 8
c,d50

N21

Gnl 1c,nm1d
nl ,nm P~n,t !G , ~2!
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c-
where the primes indicate that the free channel (a,b)
5(0,0)5(c,d) should not be considered in the summatio
and the additions in the indices of the rates and in the a
ments ofP(n,t) are all taken moduloN. Periodic boundary
conditions onL will be understood in what follows.

We now introduce vector spaces in the description of
~2!. To do this we turnv5$0,1, . . . ,N21% into v5CN and
n into un&5un1 ,n2 , . . . ,nL&PV5v ^ L. Taking the ortho-
normal basis$un&% for V we write

uP~ t !&5 (
nPV

P~n,t !un& ~3!

for the generating vector of the probabilitiesP(n,t)
5^nuP(t)&. We are in this way providing the space of ge
erating functions with a Hilbert space structure. Next
endow the space of linear transformations ofv with the ca-
nonical basis of matricesEab with elements (Eab) i j
5daidb j , 0<a,b,i , j <N21, and introduce the operatorX
such thatXi j 5d i 11,j , XN51. A little reflection and compari-
son show that within this settings we can write Eq.~2! in the
form

duP~ t !&
dt

52HuP~ t !&, ~4!

with

H5 (
(l ,m)PL

(
a,b50

N21

8 (
c,d50

N21

8 ~12Xl
a2cXm

b2d!Gcd
abEl

aaEm
bb .

~5!

H is but the infinitesimal generator of the Markov semigro
U(t)5 exp(2tH) of the continuous-time Markov chain de
fined by the set of ratesGcd

ab . From Eq.~5! we see thatH is
a NL3NL, usually nonsymmetric, very sparse matrix. O
says that Eq.~4! is an imaginary-time Schro¨dinger equation,
the fact that H does not have the physical significan
s
u-

.

of energy and in general observesH†ÞH notwithstanding. It
is, however, useful and intuitive to think ofH as a Hamil-
tonian whose quantum fluctuations govern the time fluct
tions of the classical system of particles.

The process we are interested in is a growth model
fined as follows@7#. Let hl PN be the height of a surface a
site l PL. The surface evolves by attempting, sequentia
and at randomly chosen sites, adsorption of an adatomhl

˜hl 11 with probabilityqdt, and desorption of an adatom
hl ˜min$hl 21 ,hl % or hl ˜min$hl ,hl 11% each with prob-
ability 1

2 (12q)dt. We now impose the RSOS conditio
uhl 112hl u<1,;l PL, which suggests the use of link var
ablescl 5hl 112hl P$21,0,1%. In order not to overload the
notation with unnecessary pluses and minuses, let us take
values of cl modulo 3, mappingcl 521,0,1 into cl

52,0,1, respectively. In this representation the growth p
cess can be described by the set of transition rates

G01
105

1

2
~12q!, G10

015q,

G02
205q, G20

025
1

2
~12q!,

G00
12512q, G00

215q,

and G12
005q. ~6!

According to Eq.~5! we write for this process the time evo
lution operator as

H5 (
l 51

L

H l ,l 11 , ~7!

with the two-body stochastic transition matrix given expli
itly by
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where we have ordered the two-site basis vectors antilex
graphically, i.e., u0,0&au1,0&a•••au1,2&au2,2&, and the
dots indicate null entries.

Before proceeding to the next section, it is worth mentio
ing some properties ofH. As a stochastic transition matrix
conservation of probability flux requires( iHi j 50, which in
turn constrains the diagonal elements to be given byH j j 5
2( iÞ jHi j ; compare with Eq.~1!. The first of these condi-
tions implies the existence of a trivial left eigenstate w
zero eigenvalue,

uV&5 (
nPV

un&, ^VuH50, ~9!

with ^VuV&5NL the cardinality of the state space. This sp
cial vector plays a role in the determination of expectat
values, for one can write the average of an observableA(n)
with respect to the probabilitiesP(n,t) with the aid ofuV& as

^A&~ t !5 (
nPV

A~n!P~n,t !5^VuAuP~ t !&. ~10!

We expect physical observables of the classical system
particles to be diagonal in the natural basis$un&%, once they
all have to commute.H is obviously not diagonal in this
basis; it is not an observable of the system. Equation~10!
summarizes an important difference between quantum p
ics and the kind of classical physics we have here: it is t
expectation values are linear inuP(t)&, not bilinear, the ele-
ments ofuP(t)& being probabilities themselves, not probab
ity amplitudes.

Besides these general properties, ourH in Eq. ~7! is addi-
tionally translation invariant, due to the homogeneous ra
in a ring geometry, and possesses a U(1) symmetry lab
by the total chargeQ5Q(1)2Q(2), which is conserved
along the process. These symmetries allow us to blo
diagonalizeH and to write it as the direct sum
o-

-

-
n

of

s-
t

s
ed

k-

H5 (
Q52L

L

(
k50

L21

Hk
Q , ~11!

whereQ andk label the U(1) and momentum eigensecto
respectively. Each U~1! sector represents a closed class
the stochastic process, the corresponding block matrixHQ

being itself a stochastic transition matrix governing the d
namics within the given sector. We say that our proces
decomposable, nonergodic, and that the U~1! label classifies
its 2L11 irreducible, closed classes. The momentum labek,
however, is introduced here solely in order to take adv
tage, numerically, of the further reduction of order 1/L on the
sizes of the blocksHQ it furnishes, the physically relevan
momentum sector being the one withk50, since the zero
eigenvalue together with the completely flat surface of
model is in this sector. One can look for a relationE(k)
}ku for the real part of the eigenspectrum, but we do n
expect to extract useful information, e.g., aboutu, from this
relation for small lattice sizes. Moreover, the interpretati
of such a relation for the low-lying excitations of the proce
as a dispersion relation for quasiparticles of a free fi
theory would be somewhat cavalier; see@11,12#.

III. FINITE-SIZE SCALING

According to Eqs.~6!, asq increases creation of12 as
well as annihilation of21 pairs increases while the remain
ing processes induce segregation of particles. This co
sponds to an increase in adsorption and in the growth rat
islands, leading to rougher configurations. Asq lowers, in-
creased annihilation of12 pairs together with more sym
metric diffusion of 0’s flattens the surface; see Sec. III
Around the critical pointq5qc separating these two phase
the correlation lengths of the infinite system behave like

j i } j'
u } uq2qcu2n i } uq2qcu2n'u. ~12!
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Herej i is the correlation length in the time direction whi
j' is the one in the spatial direction, withn i and n' the
corresponding critical exponents andu5n i /n' the dynamic
critical exponent.

For finite systems of sizeL, according to the usual FS
assumptions@9,13,14#, we expect the scaling

j i ,L}LuL ~13!

to hold whenq5qc,L , the finite version of the critical poin
qc , with uL the finite version ofu. On general grounds on
expects lim

L˜`
qc,L5qc and lim

L˜`
uL5u. Therefore from

Eqs.~12! and ~13! we obtain the relations

ln@j i ,L~qc,L!/j i ,L21~qc,L!#

ln~L/L21!
5

ln@j i ,L11~qc,L!/j i ,L~qc,L!#

ln~L11/L !

5uL , ~14!

which through a comparison of three successive system s
furnishes simultaneouslyqc,L and uL . Of course j i ,L

21

5Re$DEL%, with DEL5EL
(1) the first gap ofH, since for

stochastic transition matricesEL
(0)50 by construction.

A. Dynamic critical exponent

We have calculated the gapsDEL in the Q50, k50
sector through the use of the Arnoldi algorithm@15,16#. This
is a Krylov subspace projection technique that effects
reduction of a general nonsymmetric matrix to upper H
senberg form, the eigenpairs of which converge variation
to that of the original matrix with the algebraically larg
part of the spectrum converging first. In order to sa
memory we have used a restarted version of the algorithm
which we fix the dimension of the Krylov subspace and u
some of the approximate eigenvectors obtained in one it
tion as the starting vectors for the next iteration, until co
vergence is obtained to the desired accuracy. In this way
were able to handle matrices of orders up to 324 862 with
to ;83106 nonzero entries, keeping the Krylov subspa
always with fewer than 64 vectors.

The results we have obtained are summarized in Tab
and II. The extrapolated values in the last line of these tab
were obtained through the Bulirsch-Stoer extrapolat
scheme@17#, with vBST the free parameter of the algorithm
chosen over a certain range so as to optimize the converg
the finite-size data.

In applying Eqs.~14! we found two consistent, converg
ing sets of data, the first one, shown in Table I and mar
with a prime, realizing the first equality in Eqs.~14! only
approximately, and the second one, that in Table II a
marked with two primes, realizing it exactly. This behavi
is illustrated in Fig. 1.

The first set of data exhibited a rather smooth conv
gence in both the values ofqc,L anduL , while the second se
behaved more irregularly. The values in Table I indicate
second-order transition taking place aroundqc8.0.1875 with
a dynamic exponent ofu8.1.585. This value ofu8 is com-
patible with the exponent of the directed percolation proce
for which the most accurate value to date, obtained by Mo
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Carlo simulations, seems to beuDP51.580 75(3) @18#; it
should be mentioned that in an evaluation ofuDP more
closely related to ours a value ofuDP51.588(1) has been
found @19#, and that it is not clear why such discrepanci
arise in the value ofuDP calculated by different methods.

The interpretation of the data in Table II is touchier. W
can see that the values ofqc,L9 converge at a reasonable ra
to the extrapolated limitqc9.0.1932, which is different from
the previously foundqc8.0.1875. We believe, however, tha
if we have had access to larger lattice sizes, we would h
observedqc9˜qc8 , since the values ofqc8 vary less. We thus
trust the value ofqc850.1875(1) as our best estimate for th
critical point. The situation with the critical exponentuL9 is
different: it seems to be converging to a completely differe
value thanuDP. In fact, this behavior was to be expected, f
it has been found@7# that in the rough phaseq.qc the ex-
ponents of the process are those of the Kardar-Parisi-Zh
universality class@20#, in particularuKPZ5 3

2 . As can be seen
from Table II, the first few values ofuL9 show a monotonic
increasing behavior up tou99.1.4649, but then the sequenc

TABLE I. Finite-size data for the region where a minimum
observed. The numbers between parentheses represent the est
errors in the last digit of the data.

L21,L,L11 qc,L8 uL8

5,6,7 0.190 461~1! 1.794 411~1!

6,7,8 0.190 676~1! 1.749 008~1!

7,8,9 0.189 988~1! 1.718 350~1!

8,9,10 0.189 294~1! 1.695 320~1!

9,10,11 0.188 753~1! 1.677 170~1!

10,11,12 0.188 355~1! 1.662 589~1!

11,12,13 0.188 076~1! 1.650 766~1!

12,13,14 0.187 885~1! 1.641 112~1!

13,14,15 0.187 761~1! 1.633 190~2!

14,15,16 0.187 683~1! 1.626 655~2!

Extrapolated 0.1875~1! 1.585~1!

@vBST# @7.329# @2.543#

TABLE II. Finite-size data for the region where crossing occu
The data without an associated error are believed to be corre
the figures shown.

L21,L,L11 qc,L9 uL9

5,6,7 0.295 749 1.445 967
6,7,8 0.275 660 1.458 235
7,8,9 0.261 781 1.463 535
8,9,10 0.251 648 1.464 937
9,10,11 0.244 053 1.463 830
10,11,12 0.238 186 1.461 059
11,12,13 0.233 511 1.457 203
12,13,14 0.229 689 1.452 672
13,14,15 0.226 497 1.447 753
14,15,16 0.223 784 1.442 647

Extrapolated 0.1932~1! see text
@vBST# @1.815# see text
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begins to decrease to reach the bottom value ofu159
.1.4426. A partial extrapolation of the first four points,
<L<9, givesu951.47, while a partial extrapolation of th
rest of the points, 10<L<15, givesu951.42. This absence
of monotonicity of the finite-size data foruL9 is quite unusual,
and we have not yet a clear clue to this behavior. Even
we can take the set of values ofuL9 in Table II as indicating
the presence of a critical region forq.qc with an exponent
u9ÞuDP, possibly withu95uKPZ .

Concerning the exponentn' , we found it not possible to
apply the standard approach@13,14# to obtain its value be-
cause the derivatives of Re$DEL% with respect toq evaluated
at the pointsqc,L change sign for some pairs of lattice size
thus preventing us from taking logarithms. The finite-s
sequences obtained with the absolute values of these de
tives as well as with those obtained with the derivatives
the absolute values of the gaps also failed to converge
that we were not able to obtain an estimate ofn' from our
diagonalizations.

B. Spontaneous symmetry breaking

Given that the surface suffers a transition from a fl
phase to a rough phase, it is natural to think of an or
parameter which measures this transition. Moreover, it is
teresting to have an order parameter taking into account
symmetries of the process, which are besides the tran
tional and U~1! symmetries, aZ` symmetry related to the
fact that the microscopic dynamics is invariant under an
bitrary integer shifthl ˜hl 1n in the heights. A proper or-
der parameter is given by@7#

ML5
1

L (
l 51

L

~21!hl , ~15!

FIG. 1. Variation of the exponentu with q. The values ofu (1)

andu (2) were obtained from the first and second expressions in E
~14!, respectively, using the triplet of lengthsL21,L,L11
513,14,15. The inset shows that the difference between their
ues reaches a minimum aroundq50.188 and vanishes aroundq
50.226. The finite-size sequences obtained from both the min
and the crossings converge to well-defined limit values; see Ta
I and II and the text.
o,

,

va-
f
so

t
r
-

he
la-

r-

which is fast in the sense of not being conserved by
dynamics. The choice of such an order parameter anticip
the interpretation of the roughening transition~actually, of
the flattening transition! as the result of a spontaneous bre
of theZ` symmetry; while in the rough phase all heights a
exploited evenly, in the flat phase the system spontaneo
selects one fiducial level around which the heights fluctua
One then expectsML to be finite in the flat phase while
vanishing in the rough phase due to canceling fluctuation

We have calculatedML for evenL betweenL58 andL
516; our finite-size data together with the extrapolated v
ues appear in Fig. 2. From that figure we clearly see
transition taking place aroundq50.190, although the precis
determination of the critical point is not possible from th
figure. We have not found the signature of two differentqc’s
in our data forM5 lim

L˜`
ML , which we regard as an indi

cation thatqc9 should indeed tend toqc8 asL˜`.
The order parameterM vanishes aroundq&qc as M

}(qc2q)h. The plot of lnM versus ln(qc2q) for the points
0.12<q<0.18 of the extrapolated curve in Fig. 2 togeth
with a linear regression~LR! fit appears in Fig. 3. We found
an exponenth50.5760.03, which compares well with pre
vious results in the literature: in the first of the papers
Alon et al. @7#, h has been evaluated as 0.5560.05, while in
a recent simulation of a model of yeastlike growth of fun
colonies with parallel dynamics it has been found thath
.0.50 @21#. Also in a certain line in the phase diagram of
one-dimensional next-nearest-neighbor asymmetric ex
sion process closely related to these growth models it
been found thath50.5460.04 @22#. In the second of the
papers by Alonet al. @7#, however, the more accurate valu
h50.6660.06 has been published, pushing the estimate
somewhat higher value. Recent preliminary Monte Ca
simulations of ours, on the other hand, suggest a typ
Ginzburg-Landau scenario for the symmetry break in th
models, which would then predict anh5 1

2 . We believe that
more extensive simulations can settle this point, and wor
being done in this direction.

s.

l-

a
es

FIG. 2. Order parameterML for evenL betweenL58 andL
516 together with the extrapolated curve.
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C. String order parameter

In order to better understand the nature of the roughen
transition, let us look at some typical microscopic configu
tions of the model. The roughest possible surface is give
the link representation byu11•••122•••2&, the state of
maximal height in theQ50 sector of the dynamics. In spi
language, this state corresponds to two domains separate
two antiferromagnetic~AF! kinks. The second roughest po
sible surface configurations are given by those with a pai
0’s, e.g.,u1•••1002•••2& or u01•••12•••20&. From
this example and the rates in Eqs.~6! it becomes clear tha
the flattening process is induced by AF kink annihilatio
while diffusion of 0’s introduces surface shape fluctuatio
It is important to notice that the absence of desorption fr
the middle of smooth terraces enforces a certain AF or
among the particles, for pairs are created only as12 pairs,
never as21 pairs, and since there are no12
21 reac-
tions ~which would violate the RSOS condition!, we see that
this order persists as long as pairs survive annihilation. In
rough, high-q phase the1 particle will preferably move left-
wards, while the2 particle will prefer to move to the right
eventually leaving a pair of 0’s in between which then ge
erates another12 pair, thus leading to rough configuration
like, e.g., u•••110•••202•••&. In the flat, low-q phase
the diffusion of particles becomes more symmetric and
segregation of particles less efficient, and we thus expec
observe a more uniform distribution of12 pairs along the
lattice than in the high-q phase. The completely flat surfac
without any AF kink is only attained atq50.

In the context of two-dimensional RSOS crystal grow
models and the Haldane conjecture@23#, it has been pre-
dicted @24# and subsequently extensively verified@25–30#
that a particular type of long-range order exists in the s
S51 antiferromagnetic isotropic Heisenberg~AFH! chain.
In the ground state of the AFH chain, this order may
viewed as made up of~not necessarily closely! bound12
dipoles interspersed among the 0’s, forming what has
come known as an AF spin fluid. The order parameter t
identifies this type of order is the so-called string order
rameter@24#

FIG. 3. Plot of lnM vs ln(qc2q). The LR slope gives the critica
exponenth50.5760.03.
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where the brackets indicate the expectation value in
ground state. In the gapped, Haldane phase of the AFH c
as well as in the disordered flat phase of the models in@24#
one has lim

l ˜`
Op

z (l )Þ0.

From what we said above it is clear that the string orde
just the kind of order we expect to observe in the flat ph
of our model. We have thus calculated the steady state
pectation value of the string order parameter~16! with Sn

z

5cn andl 5L/211, the maximum distance in a ring geom
etry, and the results appear in Fig. 4. Our extrapolations
not perform well for this set of data, and are not shown
this figure. The general trend, however, is quite clear: ab
the critical point, q.qc , Op

z (l ) strongly tends to zero
while for q<qc we have lim

l ˜`
Op

z (l )Þ0. The pointq

50 is special, for atq50 the completely flat surface be
comes an absorbing state andOp

z (l )50 exactly at this
point. As q grows from zero, the AF spin fluid begins t
form andOp

z (l ) grows accordingly, until atq5qc the asym-
metry in the diffusion rates for the particles disrupts this A
spin fluid structure, ordered domains begin to prevail, a
the string order vanishes. We then see that the string o
parameter clearly reveals the mechanism of the roughe
transition as the unbounding of the fluid antiferromagne
pairs in favor of the formation of ordered domains.

IV. SUMMARY AND CONCLUSIONS

In summary, we carried out a finite-size scaling study
the roughening transition in a class of one-dimensio
RSOS models which also presents spontaneous symm
breaking. We found that at the critical pointqc50.1875(1)
the transition occurs with a dynamic exponent compati
with that of the directed site percolation process, for wh
we have the estimateu51.585(1), andthat aboveqc there is
a critical rough phase most probably with KPZ exponen
Unfortunately, we were unable to calculate a second ex
nent from our diagonalizations. This might be due to t

FIG. 4. String order parameterOp
z (L/211) for evenL between

L58 andL516.
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non-Hermiticity of the operatorH, which might have caused
an unusual nonmonotonicity in the values of the gaps w
the parameterq, thus preventing us from obtainingn' . This
lack of monotonicity has already been reported in the lite
ture@4,31#, where noticed the slow convergence of the fini
size data towards the infinite volume limit has also be
noticed.

The order parameterM was found to vanish likeM}(qc
2q)h for q&qc with an exponenth50.5760.03, in agree-
ment with previously found values ofh @7,21,22#. The cal-
culation of the string order parameter revealed that the
gapped phase of the model is a disordered phase analo
to a Haldane phase, with the stationary state presentin
antiferromagnetic spin-fluid structure of kinks, althou
dominated by the completely flat surface with no such
structure. The roughening transition may thus be underst
in the link representation as the unbounding of the fluid
tiferromagnetic pairs in favor of the formation of ordere
domains, which then begin to blend together, providing
surface with a finite growth velocity.

It is possible to push further the investigation of this cla
of models in one definite way. The idea is to allow for
explicit break of the symmetry in the set of rates, Eq.~6!, by
the following artifact @32#. In the particle scenario, we
double the number of sites, introducing between two succ
sive linkscl ,cl 11 a noninteracting flag variableml 11/2 tak-
ing two possible values, call them1 and 2. This variable
will mimic the pseudospin (21)hl . We then allow the rates
of our modified model to be parametrized by, besidesq, a
chiral symmetry breaking fielduP@21,1# such that now the
rates depend on the quantities
ys
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p5~12u!q and p̃5~11u!q

according toGc2d
a1b5Gcd

ab(p) andGc1d
a2b5Gcd

ab( p̃); the roles of

p and p̃ interchanged wheneverGdc
baÞ0 for a givenGcd

abÞ0.

For example, G021
1105 1

2 (12p) and G011
1205 1

2 (12 p̃), but

G120
0115 p̃ andG110

0215p. The choice of which combination o

values ofm’s in the new rates will pick ap or a p̃ with
respect to the original rates is immaterial, for lettingu˜
2u exchange their roles. For this process one may look
the order parameter

ML~u!5
1

L (
l 51

L

ml 11/2

to see whether one finds a spontaneously symmetry-bro
phase. It may happen that for some values of the fieldu one
gets spinodal points, and that these points are associated
unusual dynamic exponents, e.g.,u51, once they have al-
ready appeared in one-dimensional driven diffusive syste
@4#. This problem is currently under investigation.
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